Abstract

A high-throughput proteomic workflow with good sensitivity and reproducibility is highly demanding for proteomic studies of large clinical cohorts. We present a workflow that seamlessly integrates the zwitter-ionic monolith-based spintip (ZIM-Tip) with the Evosep One liquid chromatography system to address this challenge. Disposable ZIM-Tips were prepared with satisfying permeability based on photo-initiated free radical polymerization. Sample preparation steps, including ion-exchange-based protein concentration, reduction, alkylation, and enzymatic digestion, were processed on the ZIM-Tips in 2 h with about 10% sample loss. The peptides recovered from ZIM-Tips were directly loaded on Evotips for desalting and proteomic data acquisition. In one-hour high performance liquid chromatography-MS/MS run, more than 4000 proteins were consistently identified from 1 µg of cell lysate using timsTOF Pro-mass spectrometer in data-dependent acquisition mode (DDA). At least 20 samples with protein amount of 1 µg could be processed each day. Good intra- and inter-day precision in quantification were demonstrated with median coefficient of variation (CV) values of less than 20% and 30%, respectively. The average Pearson correlation coefficients of each two sets of samples are 0.934 and 0.901, respectively. Collectively, the ZIM-Tip technology offers an useful solution for clinical cohort studies with demand for large sample amounts and low sample input while maintaining in-depth proteome coverage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.