Abstract

Sex chromosomes in some reptiles share synteny with distantly related amniotes in regions orthologous to squamate chromosome 2. The latter finding suggests that chromosome 2 was formerly part of a larger ancestral (amniote) super-sex chromosome and raises questions about how sex chromosomes are formed and modified in reptiles. Australian dragon lizards (Agamidae) are emerging as an excellent model for studying these processes. In particular, they exhibit both genotypic (GSD) and temperature-dependent (TSD) sex determination, show evidence of transitions between the two modes and have evolved non-homologous ZW sex microchromosomes even within the same evolutionary lineage. They therefore represent an excellent group to probe further the idea of a shared ancestral super-sex chromosome and to investigate mechanisms for transition between different sex chromosome forms. Here, we compare sex chromosome homology among eight dragon lizard species from five genera to identify key cytological differences and the mechanisms that may be driving sex chromosome evolution in this group. We performed fluorescence in situ hybridisation to physically map bacterial artificial chromosome (BAC) clones from the bearded dragon, Pogona vitticeps’ ZW sex chromosomes and a nucleolar organising region (NOR) probe in males and females of eight Agamid species exhibiting either GSD or TSD. We show that the sex chromosome derived BAC clone hybridises near the telomere of chromosome 2q in all eight species examined. This clone also hybridises to the sex microchromosomes of three species (P vitticeps, P. barbata and Diporiphora nobbi) and a pair of microchromosomes in three others (Ctenophorus pictus, Amphibolurus norrisi and Amphibolurus muricatus). No other chromosomes are marked by the probe in two species from the closely related genus Physignathus. A probe bearing nucleolar organising region (NOR) sequences maps close to the telomere of chromosome 2q in all eight species, and to the ZW pair in P. vitticeps and P. barbata, the W microchromosome in D. nobbi, and several microchromosomes in P. cocincinus. Our findings provide evidence of sequence homology between chromosome 2 and the sex chromosomes of multiple agamids. These data support the hypothesis that there was an ancestral sex chromosome in amniotes that gave rise to squamate chromosome 2 and raises the prospect that some particular property of this chromosome has favoured its role as a sex chromosome in amniotes. It is likely that the amplification of repetitive sequences associated with this region has driven the high level of heterochromatinisation of the sex-specific chromosomes in three species of agamid. Our data suggest a possible mechanism for chromosome rearrangement, including inversion and duplication near the telomeric regions of the ancestral chromosome 2 and subsequent translocation to the ZW sex microchromosomes in three agamid species. It is plausible that these chromosome rearrangements involving sex chromosomes also drove speciation in this group.

Highlights

  • IntroductionSex chromosomes are a common feature of organisms with genotypic sex determination (GSD)and generally take the form XX/XY (male heterogamety) or ZZ/ZW (female heterogamety)

  • Sex chromosomes are a common feature of organisms with genotypic sex determination (GSD)and generally take the form XX/XY or ZZ/ZW

  • To better understand the evolution of agamid sex chromosomes and those of P. vitticeps we have developed a number of molecular resources for comparative genomic analyses that include a sex chromosome ‘paint’ [13], sex-linked markers [14,15] and a bacterial artificial chromosome (BAC)

Read more

Summary

Introduction

Sex chromosomes are a common feature of organisms with genotypic sex determination (GSD)and generally take the form XX/XY (male heterogamety) or ZZ/ZW (female heterogamety). Genome sequence analyses and cross-species gene mapping have established that the synteny seen among sex chromosome genes in some reptiles is shared with distantly related amniotes and often involves genomic regions orthologous to squamate chromosome 2 [12]. This finding led us to hypothesise that the ancestral squamate chromosome 2 was part of a larger ancestral amniote super-sex chromosome containing large segments whose synteny is conserved among extant amniotes and that multiple chromosomal rearrangements have occurred during the evolution of sauropsid sex chromosomes [12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call