Abstract
The transition from the (covariantly generalized) MAXWELL equations to the geometrical optics limit is discussed in the context of general relativity, by adapting the classical series expansion method to the case of curved space time. An arbitrarily moving ideal medium is also taken into account, and a close formal similarity between wave propagation in a moving medium in flat space time and in an empty, gravitationally curved space-time is established by means of a normal hyperbolic optical metric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.