Abstract

This paper proposes three applications of the Z-source inverter (ZSI) for automotive applications. The first application proposes the using of the bidirectional ZSI (BZSI) supplied by a battery to drive an induction motor (IM) for hybrid electric vehicle (HEV) applications, by replacing the two stages conversion. The second application proposes the using of the BZSI in plug-in hybrid electric vehicle (PHEV) applications for replacing the bidirectional battery charger, which composed of two stages conversion. By using the BSZI, the battery can be charged from the grid during night and can be discharged to the grid during peak power demand, which increase the grid stability. The third application proposes the using of the high-performance ZSI (HP-ZSI) for fuel cell hybrid electric vehicle (FCHEV) applications. Where the fuel cell (FC) stack and the supercapacitor (SC) module are directly connected in parallel with the HP-ZSI. The SC module is connected between the input diode D and the bidirectional switch S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">7</sub> of the HP-ZSI. The SC module supplies the transient and instantaneous peak power demands and absorbs the deceleration and regenerative braking energy. The indirect field oriented control (IFOC) is used to control the speed of the IM during motoring and regenerative braking operation modes in the first and the third proposed applications. While, a proportional plus resonance (PR) controller is used to control the AC current during connecting the BZSI to the grid for battery charging/discharging mode in the second proposed application. MATLAB simulations results verify the validity of the three proposed applications and their control strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.