Abstract
ZrO2/PMMA nanocomposite particles are synthesized through an in-situ free radical emulsion polymerization based on the silane coupling agent (Z-6030) modified ZrO2 nanoparticles, and the morphology, size and its distribution of nanocomposite particles are investigated. Scanning electron microscopy (SEM) images demonstrate that the methyl methacrylate (MMA) feeding rate has a significant effect on the particle size and morphology. When the MMA feeding rate decreases from 0.42 mlmin−1 to 0.08 mlmin−1, large particles (about 200-550 nm) will not form, and the size distribution become narrow (36-54 nm). The average nanocomposite particles size increases from 34 nm to 55 nm, as the MMA/ZrO2 nanoparticles mass ratio increased from 4 : 1 to 16 : 1. Regular spherical ZrO2/PMMA nanocomposite particles are synthesized when the emulsifier OP-10 concentration is 2 mgml−1. The nanocomposite particles could be mixed with VAc-VeoVa10 polymer matrix just by magnetic stirring to prepare the ZrO2/PMMA/VAc-VeoVa10 hybrid coatings. SEM and atomic force microscopy (AFM) photos reveal that the distribution of the ZrO2/PMMA nanocomposite particles in the VAc-VeoVa10 polymer matrix is homogenous and stable. Here, the grafted-PMMA polymer on ZrO2 nanoparticles plays as a bridge which effectively connects the ZrO2 nanoparticles and the VAc-VeoVa10 polymer matrix with improved comparability. In consequence, the hybrid coating with good dispersion stability is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.