Abstract

The development of efficient catalysts for the direct synthesis of higher alcohols (HA) via CO hydrogenation has remained a prominent research challenge. While modified Fischer-Tropsch synthesis (m-FTS) systems hold great potential, they often retain limited active site density under operating conditions for industrially relevant performance. Aimed at improving existing catalyst architectures, this study investigates the impact of highly dispersed metal oxides of Co-Cu, Cu-Fe, and Co-Fe m-FTS systems and demonstrates the viability of ZrO2 as a general promoter in the direct synthesis of HA from syngas. A volcano-like composition-performance relationship, in which 5-10 mol % ZrO2 resulted in maximal HA productivity, governs all catalyst families. The promotional effect resulted in a 2.5-fold increase in HA productivity for the optimized Cu1Co4@ZrO2-5 catalyst (Cu:Co = 1:4, 5 mol % ZrO2) compared to its ZrO2-free counterpart and placed Co1Fe4@ZrO2-10 among the most productive systems (345 mgHA h-1 gcat-1) reported in this category under comparable operating conditions, with stable performance for at least 300 h. ZrO2 assumes an amorphous and defective nature on the catalysts, leading to enhanced H2 and CO activation, facilitated formation of metallic and carbide phases, and structural stabilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call