Abstract

ABSTRACTRecently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [BaxSr1-xTiO3, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found that inserting a ZrO2 layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO2 layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO2/BST multilayer structure is studied. The multilayer Ba0.8Sr0.2TiO3/ZrO2/Ba0.8Sr0.2TiO3 film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO2 layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO2 layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO2 layer thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.