Abstract
Porous ultra-high temperature ceramics (UHTCs) are recognized as novel candidates for fulfilling the requirements of thermal protection systems of hypersonic aircrafts, as they possess excellent high-temperature resistance and low thermal conductivity. Currently, the reported porous UHTCs predominantly exhibit an open pore structure. By contrast, closed-cell UHTCs, formed by employing ceramic hollow microspheres (HMs) as pore-forming agents, hold great potential for achieving superior thermal insulation performance. Unfortunately, the implementation of this strategy has been hindered by the scarcity of raw materials and preparation techniques.In this paper, ZrC-SiC closed-cell ceramics were first successfully prepared through a combination of tape casting and chemical vapor infiltration (CVI) techniques, utilizing the self-developed ZrC HMs as the primary raw material. The morphology, microstructure, and thermal insulation properties of the obtained ZrC-SiC closed-cell ceramics were investigated. The results indicate that when the content of ZrC HMs is 30 vol.%, the density of the prepared porous ceramics is 2.09 g cm–3, with a closed porosity of 14.05% and a thermal conductivity of 1.69 W (m K)–1. The results clearly prove that the CVI process can successfully convert ZrC HMs into closed pore structures within porous ceramics. The introduction of ZrC HMs suppresses the contribution of free electrons to thermal conductivity and brings about a large number of solid-gas interfaces, which increases the interfacial thermal resistance and significantly reduces the phonon thermal conductivity. Consequently, the as-prepared ZrC-SiC closed-cell ceramics show excellent thermal insulation properties. This study provides a new idea and method for the development of porous UHTCs and offers a more reliable material choice for thermal protection systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.