Abstract

93Zr (t1/2=1.6Ma) is mostly produced by the main s-process in low-to-intermediate mass AGB stars. Large uncertainty exists in the current 92Zr(n,γ)93Zr Maxwellian Average cross section. This could have significant impact on nucleosynthesis calculations. Large amounts of 93Zr are also produced in nuclear reactors and pose long-term environmental radioactivity. Hence, measurement of 93Zr by the AMS is important for both fields above. We report here on progress in the development of AMS method to measure 93Zr. Compared with 98MeV beam energy, Zr/Nb isobar position separation was improved using 155.2MeV beam energy and Gas-Filled Magnet. Energy loss measurement with increased beam energy inside the detector indicates that higher beam energy can improve isobar energy loss separation. A chemical procedure to reduce the Nb content in Zr samples has been developed and tested. It reduces the 93Nb content by a factor of 1000.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.