Abstract

Al-Si-Cu-Mg alloys are among the most significant types of aluminum alloys, accounting for 85–90% of all castings used in the automotive sector. These alloys are used, for example, in the manufacturing of engine blocks and cylinder heads due to their excellent specific strength (ratio of strength to specific weight) and superior castability and thermal conductivity. This study investigated the effect of using Zr as an alternative grain refiner in the novel AlSi5Cu2Mg cylinder head alloy. The microstructure of this alloy could not be refined via common Al-Ti-B grain refiners due to its specifically designed chemical composition, which limits the maximum Ti content to 0.03 wt.%. The results showed that the addition of Zr via the AlZr20 master alloy led to a gradual increase in the solidus temperature and to the grain refinement of the microstructure with the addition of as little as 0.05 wt.% Zr. The addition of more Zr (0.10, 0.15, and 0.20 wt.%) led to a gradual grain refinement effect for the alloy. The presence of Zr in the AlSi5Cu2Mg alloy was reflected in the formation of Zr-rich intermetallic phases with acicular morphology. Such phases acted as potent nucleants for the α-Al grain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.