Abstract

In this work, a new concept of metal surface protection against degradation caused by high-temperature oxidation in water environment is presented. We were the first to create a double-layered coating consisting of an active and passive part to protect Zr alloy surface against high-temperature oxidation in a hot water environment. We investigated the hot steam corrosion of ZIRLO fuel cladding coated with a double layer consisting of 500 nm nanocrystalline diamond (NCD) as the bottom layer and 2 μm chromium-aluminum-silicon nitride (CrAlSiN) as the upper layer. Coated and uncoated ZIRLO samples were exposed for 4 days at 400 °C in an autoclave and for 60 min at 1000 °C (nuclear reactor accident temperature) in a hot steam furnace. We have shown that the NCD coating protects the Zr alloy surface against oxidation in an active way: carbon from NCD layer enters the Zr alloy surface and, by changing the physical and chemical properties of the Zr cladding tube surface, limits the Zr oxidation process. In contrast, the passive CrAlSiN coating prevents the Zr cladding tube surface from coming into physical contact with the hot steam. The advantages of the double layer were demonstrated, particularly in terms of hot (accident-temperature) oxidation kinetics: in the initial stage, CrAlSiN layer with low number of defects acts as an impermeable barrier. But after a longer time (more than 20 min) the protection by more cracked CrAlSiN decreases. At the same time, the carbon from NCD strongly penetrates the Zr cladding surface and worsen conditions for Zr oxidation. For the double-layer coating, the underlying NCD layer mitigates thermal expansion, reducing cracks and defects in upper layer CrAlSiN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.