Abstract

With the ever-increasing popularity and applications of graph neural networks, several proposals have been made to explain and understand the decisions of a graph neural network. Explanations for graph neural networks differ in principle from other input settings. It is important to attribute the decision to input features and other related instances connected by the graph structure. We find that the previous explanation generation approaches that maximize the mutual information between the label distribution produced by the model and the explanation to be restrictive. Specifically, existing approaches do not enforce explanations to be valid, sparse, or robust to input perturbations. In this paper, we lay down some of the fundamental principles that an explanation method for graph neural networks should follow and introduce a metric <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">RDT-Fidelity</i> as a measure of the explanation's effectiveness. We propose a novel approach Zorro based on the principles from <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">rate-distortion theory</i> that uses a simple combinatorial procedure to optimize for RDT-Fidelity. Extensive experiments on real and synthetic datasets reveal that Zorro produces sparser, stable, and more faithful explanations than existing graph neural network explanation approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.