Abstract
BackgroundOomycetes attack a huge variety of economically and ecologically important plants. These pathogens release, detect and respond to signal molecules to coordinate their communal behaviors including the infection process. When signal molecules are present at or above threshold level, single zoospores can infect plants. However, at the beginning of a growing season population densities of individual species are likely below those required to reach a quorum and produce threshold levels of signal molecules to trigger infection. It is unclear whether these molecules are shared among related species and what their chemistries are.ResultsZoospore-free fluids (ZFF) from Phytophthora capsici, P. hydropathica, P. nicotianae (ZFFnic), P. sojae (ZFFsoj) and Pythium aphanidermatum were cross tested for stimulating plant infection in three pathosystems. All ZFFs tested significantly increased infection of Catharanthus roseus by P. nicotianae. Similar cross activities were observed in infection of Lupinus polyphyllus and Glycine max by P. sojae. Only ZFFnic and ZFFsoj cross induced zoospore aggregation at a density of 2 × 103 ml-1. Pure autoinducer-2 (AI-2), a component in ZFF, caused zoospore lysis of P. nicotianae before encystment and did not stimulate plant infection at concentrations from 0.01 to 1000 μM. P. capsici transformants with a transiently silenced AI-2 synthase gene, ribose phosphate isomerase (RPI), infected Capsicum annuum seedlings at the same inoculum concentration as the wild type. Acyl-homoserine lactones (AHLs) were not detected in any ZFFs. After freeze-thaw treatments, ZFF remained active in promoting plant infection but not zoospore aggregation. Heat treatment by boiling for 5 min also did not affect the infection-stimulating property of ZFFnic.ConclusionOomycetes produce and use different molecules to regulate zoospore aggregation and plant infection. We found that some of these signal molecules could act in an inter-specific manner, though signals for zoospore aggregation were somewhat restricted. This self-interested cooperation among related species gives individual pathogens of the same group a competitive advantage over pathogens and microbes from other groups for limited resources. These findings help to understand why these pathogens often are individually undetectable until severe disease epidemics have developed. The signal molecules for both zoospore aggregation and plant infection are distinct from AI-2 and AHL.
Highlights
Oomycetes attack a huge variety of economically and ecologically important plants
zoospore-free fluid (ZFF) interspecific stimulation of zoosporic infection Zoospore-free fluids were prepared from suspensions at a density of 104 zoospores ml-1 or higher of Phytophthora nicotianae (ZFFnic), P. capsici (ZFFcap), P. hydropathica (ZFFhyd), P. sojae (ZFFsoj) and Pythium aphanidermatum (ZFFaph) and evaluated in three phytopathosystems
Inoculation of annual vinca (Catharanthus roseus) with suspensions containing an average of one zoospore of P. nicotianae in any of the four ZFFs resulted in significantly higher infection (P < 0.001) compared to the control (SDW)
Summary
Oomycetes attack a huge variety of economically and ecologically important plants These pathogens release, detect and respond to signal molecules to coordinate their communal behaviors including the infection process. At the beginning of a growing season population densities of individual species are likely below those required to reach a quorum and produce threshold levels of signal molecules to trigger infection. Zoosporic plant pathogens in the phylum Oomycota of the Stramenopila kingdom include hundreds of devastating species that attack a broad range of economically important agricultural and ornamental crops as well as forest tree species [1,2] These oomycetes, including Phytophthora and Pythium species, use motile zoospores and plant infection can be initiated efficiently through chemical communication by the population. The function of AI-2 in eukaryotes has not been established
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.