Abstract
Anthropogenic activities generate a severe footprint at a global scale. Intensive agriculture is a global change driver that affects aquatic systems due to the discharge of pollutants. This situation can be modified or aggravated by other aspects, such as the disturbance history and other global change factors. Following our study line, it is necessary to evaluate how the disturbance history combined with temperature changes can affect the functioning of aquatic systems. The objectives of this study were divided into two phases. The objectives of phase 1 were to induce vulnerability in Daphnia magna populations through a disturbance history based on sublethal glyphosate concentration exposure under different temperature conditions (20 °C and 25 °C). In phase 2, vulnerability was assessed through the exposure to subsequent stressors (starvation, increased salinity and paracetamol) combined with changes in temperature. During the glyphosate exposure period in phase 1, differences were observed in the D. magna populations with respect to temperature, with lower abundance at 25 °C than at 20 °C. However, no differences were observed in abundance regarding glyphosate treatment. The results obtained in phase 2 with the new stressors combined with temperature changes in both directions, revealed stronger effects in vulnerable populations than in control populations. In addition, the temperature changes modulated the effects in the starvation and increased salinity tests. Agrochemical sublethal concentrations induce vulnerability in D. magna populations and inflicted temperature changes can act as a modulating factor for this vulnerability, showing the complexity in assessing the responses under the multiple scenarios associated with global change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.