Abstract

Trachoma is the leading cause of preventable blindness. Commercial assays do not discriminate among all Chlamydiaceae species that might be involved in trachoma. We investigated whether a commercial Micro-ArrayTube could discriminate Chlamydiaceae species in DNA extracted directly from conjunctival samples from 101 trachoma patients in Nepal. To evaluate organism viability, we extracted RNA, reverse transcribed it, and subjected it to quantitative real-time PCR. We found that 71 (70.3%) villagers were infected. ArrayTube sensitivity was 91.7% and specificity was 100% compared with that of real-time PCR. Concordance between genotypes detected by microarray and ompA genotyping was 100%. Species distribution included 54 (76%) single infections with Chlamydia trachomatis, C. psittaci, C. suis, or C. pecorum, and 17 (24%) mixed infections that includied C. pneumoniae. Ocular infections were caused by 5 Chlamydiaceae species. Additional studies of trachoma pathogenesis involving Chlamydiaceae species other than C. trachomatis and their zoonotic origins are needed.

Highlights

  • IntroductionCommercial assays do not discriminate among all Chlamydiaceae species that might be involved in trachoma

  • Trachoma is the leading cause of preventable blindness

  • We investigated whether the ArrayTube could discriminate among Chlamydiaceae species in DNA that was extracted directly from conjunctival samples from trachoma patients residing in a trachoma-endemic region of Nepal

Read more

Summary

Introduction

Commercial assays do not discriminate among all Chlamydiaceae species that might be involved in trachoma. We investigated whether a commercial Micro-ArrayTube could discriminate Chlamydiaceae species in DNA extracted directly from conjunctival samples from 101 trachoma patients in Nepal. Ocular infections were caused by 5 Chlamydiaceae species. The commercial ArrayTube assay has been successfully used to identify mixed infections among animals infected with multiple species of Chlamydiaceae [18,19]. Because of these benefits, we investigated whether the ArrayTube could discriminate among Chlamydiaceae species in DNA that was extracted directly from conjunctival samples from trachoma patients residing in a trachoma-endemic region of Nepal. As an independent test for viability of Chlamydiaceae organisms, RNA was isolated from the same samples and tested by quantitative RT-PCR (qRT-PCR)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.