Abstract
Perceptual load theory (Lavie, 2005) claims that attentional capacity that is not used for the current task is allocated to irrelevant distractors. It predicts that if the attentional demands of the current task are high, distractor interference will be low. One particularly powerful demonstration of perceptual load effects on distractor processing relies on a go/no-go cue that is interpreted by either simple feature detection or feature conjunction (Lavie, 1995). However, a possible alternative interpretation of these effects is that the differential degree of distractor processing is caused by how broadly attention is allocated (attentional zoom) rather than to perceptual load. In 4 experiments, we show that when stimuli are arranged to equalize the extent of spatial attention across conditions, distractor interference varies little whether cues are defined by a simple feature or a conjunction, and that the typical perceptual load effect emerges only when attentional zoom can covary with perceptual load. These results suggest that attentional zoom can account for the differential degree of distractor processing traditionally attributed to perceptual load in the go/no-go paradigm. They also provide new insight into how different factors interact to control distractor interference. (PsycINFO Database Record
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of experimental psychology. Human perception and performance
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.