Abstract

For several decades, researchers have been using the world’s most powerful lasers to try to recreate the fusion reaction that occurs in stars. The process, called inertial confinement fusion (ICF), uses multiple laser beams to compress and heat a small, spherical target containing nuclear fuel, in order to ignite thermonuclear fusion. In principle, the heat released from the reaction could provide an alternative energy source, but the challenges to achieving ignition are many. One, in particular, is to understand and control a process first identified in the mid1990s [1] called crossed-beam energy transfer (CBET), in which the laser beams exchange energy with each other as they overlap in the plasma. In laser-driven fusion experiments, CBET occurs just before the laser beams deposit their energy into the target. The effect can therefore modify the finely tuned symmetry of the beams [2, 3] or cause energy to leak out of the target [4, 5].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.