Abstract

Organizations are increasingly leveraging the ability of artificial intelligence to analyze and resolve complex problems. This can potentially reshape the interdependencies and interactions of complex systems, leading to our research question: To what extent and in which direction is the literature on Artificial Intelligence (AI) and System Dynamics (SD) converging within the business and management landscape? We conducted an extensive literature review using bibliometric and topic modeling methods to address this question. Through a bibliometric analysis, we identified the areas in which academic papers referred to both SD and AI literature. However, bibliometrics do not show a clear path towards convergence. The top modeling analysis highlights more details on how convergence is structured, providing insights into how SD and AI may be integrated. Two trajectories are identified. In the “soft convergence,” AI supports system dynamics analysis and modeling more deeply characterized by social interaction. In the “hard convergence,” AI shapes innovative ways of rethinking system design, dynamics, and interdependencies. Our analysis suggests that while soft convergence is more visible in the business and management landscape, hard convergence may well represent a new frontier in studying system dynamics with the potential to reshape the landscape.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.