Abstract

A novel imaging spectrometer can individually control spatial and spectral resolution by using zoom lenses as the foreoptics of the system and a focusing lens. By varying the focal length we can use the focusing lens to change the spatial and spectral dimensions; with the foreoptics, however, we can change only the spatial dimension. Therefore the spectral resolution and the spectral range are affected by the zoom ratio of the focusing lens, whereas the spatial resolution and the field of view are affected by the multiplication of the zoom ratios of the foreoptics and the focusing lens. By properly combining two zoom ratios, we can control the spectral resolution with a fixed spatial resolution or the spatial resolution with a fixed spectral resolution. For an imaging spectrometer with this novel zooming function, we used the lens module method and third-order aberration theory to design an initial four-group zoom system with an external entrance pupil for the focusing lens. Furthermore, using the optical design software CODE V, we obtained an optimized zoom lens with a focal-length range of 50 to 150 mm. Finally, the zoom system with its transmission grating in the Littrow configuration performs satisfactorily as the focusing lens of an imaging spectrometer in the wavelength range 450-900 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.