Abstract
We have investigated several chromite deposits in the Mayari-Baracoa Ophiolite Belt (eastern Cuba) and in the Dobromirtsi metamorphosed ultramafic (ophiolitic) massif (SE Bulgaria) with regard to zoning in platinum-group minerals (PGM) of the laurite (RuS 2 )–erlichmanite (OsS 2 ) solid solution series. We found several zoned laurite–erlichmanite grains all included in unaltered chromite crystals. On the basis of internal ordering and compositional variations, three different patterns of zoning have been distinguished: (i) grains with Os-poor (laurite) core and Os-rich rim (normal zoning), (ii) grains with Os-rich core and Os-poor rim (reverse zoning) and (iii) grains made up of a complex intergrowth of Os-rich, Os-poor laurite and erlichmanite (oscillatory zoning). The origin of zoning is interpreted mainly as a result of changes in f (S 2 ), f (O 2 ) and to a lesser extent in melt temperature, before PGM trapping in chromite. A possible case of heterogeneous physicochemical environment in which such changes can take place is when chromite forms during magma mingling of silicate melts in the upper mantle. The preservation of laurite–erlichmanite zoning is attributed to the low diffusion coefficient of Ru and Os in pyrite-type structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.