Abstract
This paper proposes a zonation method for training the two reinforcement learning agents. We demonstrate the method's effectiveness in the double snake game. The game consists of two snakes operating in a fully cooperative setting to maximize the score. The problem in this game can be related to real-world problems, namely, coordination in autonomous driving cars and the operation of collaborative mobile robots in warehouse applications. Here, we use a deep Q-network algorithm to train the two agents to play the double snake game collaboratively through a decentralized approach, where distinct state and reward functions are assigned to each agent. To improve training efficiency, we utilize the snake sensory data of the surrounding objects as the input state to reduce the neural network complexity. The obtained result show that the proposed approaches can be used to train collaborative multi-agent efficiently, especially in the limited computing resources and training time environment
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advance Sustainable Science, Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.