Abstract
We describe a zonal-wavefront-sensing technique using an array of plane diffraction gratings. A spatially coherent beam, whose wavefront is to be measured, is incident on the array of gratings. The direction of a diffracted beam of a certain diffraction order is a function of the orientation and periodicity of the corresponding grating. Thus, by choosing the orientation and periodicity of each grating appropriately and by having a lens immediately behind the grating array, it is possible to get an array of focal spots. The profile of the incident wavefront can be estimated from the displacements of these focal spots relative to those due to an unaberrated beam. The arrangement makes it possible to increase the separation between two adjacent focal spots corresponding to two nearby gratings without effecting the areas of the gratings. Consequently, a relatively large dynamic range in wavefront measurement can be achieved without compromising the accuracy. With the arrangement it is also possible to use a photodetector array whose outline is independent of the grating array outline. The proposed wavefront-sensing technique is implemented experimentally using a liquid-crystal spatial-light modulator in conjunction with a CCD camera, and the obtained results are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.