Abstract
Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sense of their L1-norm is attaining the minimum value. Such polynomials satisfy a complicated system of nonlinear equations (algebraic if the space dimension is odd, only) and also a singular differential equation of third order. The exact order of decay of the minimum value with respect to the polynomial degree is determined. By our results we can prove that some nodal systems on the sphere, which are defined by a minimum property, are providing fundamental matrices which are diagonal-dominant or bounded with respect to the ∞-norm, at least, as the polynomial degree tends to infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.