Abstract

Prior to fertilization, the zona pellucida surrounding the mammalian oocyte acts as a species-specific sperm barrier and is involved in sperm binding. After fertilization, the zona plays a role in blocking polyspermic fertilization, it protects the integrity of the preimplantation embryo during early embryonic development, and also helps its oviductal transport. Zona hardening occurs naturally after fertilization in order to ensure this threefold function. A combination of lysins produced by the cleaving embryo or the uterus and physical expansion then reduces the zona thickness in preparation for hatching. Zona hardening, although not readily quantifiable, may also be induced by in vitro culture and by in vivo aging. Indeed, prolonged exposure of human oocytes and embryos to artificial culture conditions seems to impair their ability to implant. Implantation rates are also inversely correlated with advanced female age. Recently, failure of the embryonic zona pellucida to rupture following blastocyst expansion has been put forward as a possible contributing factor in implantation failure. In order to help embryos escape from their zonae during blastocyst expansion, different types of assisted hatching have been developed. Zona drilling involves the creation of an opening in the zona with acidified medium, whereas zona slitting is carried out in the same manner as partial zona dissection. In zona thinning, the zona is just made thinner over a certain area without a hole or a slit being created. More recently, laser-assisted hatching has been introduced. In vitro studies with both mouse and human embryos have indicated that an artificial gap in the zona pellucida significantly improves the hatching ability of blastocysts grown in vitro as compared to non-micromanipulated embryos. However, the clinical relevance of assisted hatching within an assisted reproduction program remains controversial and elusive. Very few randomized studies are available. Most reports are of retrospective analyses which report either no differences in implantation and pregnancy rates between assisted hatching and control embryos or better results after assisted hatching. Five randomized controlled studies suggest that assisted hatching – of no benefit to the overall patient population – might be of value in increasing embryo implantation rates only in selected cases. No further evidence exists for an age-related benefit from assisted hatching in patients with advanced maternal age.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call