Abstract

Mini-abstractIn this study, we demonstrated that the use of zoledronic acid does not impair fracture healing, but results in superior callus size and resistance at the fracture site, which could be the consequence of a lower rate of bone turnover due to its anti-catabolic effect. ObjectiveTo investigate the effect of inhibition of bone remodeling by the bisphosphonate, zoledronic acid, on callus properties in an osteoporotic rat model of fracture healing. MethodsOvariectomized (OVX) rats were randomly divided into four treatment groups (n=24 per group): saline control (CNT); and three systemic zoledronic acid-injected groups (0.1mg/kg), administered 1day (ZOLD1), 1week (ZOLW1), and 2weeks (ZOLW2) after fracture. Rats were killed at either 6 or 12weeks postoperatively. Postmortem analyses included radiography, microcomputed tomography, histology, histomorphometry, biomechanical tests, and nanoindentation tests. ResultsTreatment with zoledronic acid led to a significant increase in trabecular bone volume within the callus, as well as in callus resistance, compared to those in the saline control rats; delayed administration (ZOLW2) reduced intrinsic material properties, including ultimate stress and elastic modulus, and microarchitecture parameters, including bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), and connectivity density (Conn.D), compared with ZOLD1 at 12weeks after surgery. OVX had a negative effect on the progression of endochondral ossification at 6weeks. Zoledronic acid administration at an early stage following fracture may bind to early callus, and thus not affect subsequent callus formation and endochondral ossification, while delayed administration (ZOLW2) mildly suppresses bony callus remodeling. ConclusionThe superior results obtained with zoledronic acid (ZOLD1, ZOLW1, and ZOLW2) compared to CNT in terms of callus size and resistance could be the consequence of a lower rate of bone turnover at the fracture site due to the anti-catabolic effect of zoledronic acid. Mild suppression of callus remodeling by delayed administration did not impair the initial phase of the fracture healing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.