Abstract

The disruption of the spatial order of electromechanical junctions at myocyte-intercalated disks (ICDs) is a poorly understood characteristic of many cardiac disease states. Here, in vitro and in vivo evidence is provided that zonula occludens-1 (ZO-1) regulates the organization of gap junctions (GJs) and adherens junctions (AJs) at ICDs. We investigated the contribution of ZO-1 to cell-cell junction localization by expressing a dominant-negative ZO-1 construct (DN-ZO-1) in rat ventricular myocytes (VMs). The expression of DN-ZO-1 in cultured neonatal VMs for 72 h reduced the interaction of ZO-1 and N-cadherin, as assayed by colocalization and coimmunoprecipitation, prompting cytoplasmic internalization of AJ and GJ proteins. DN-ZO-1 expression in adult VMs in vivo also reduced N-cadherin colocalization with ZO-1, a phenomenon not observed when the connexin-43 (Cx43)-ZO-1 interaction was disrupted using a mimetic of the ZO-1-binding ligand from Cx43. DN-ZO-1-infected VMs demonstrated large GJs at the ICD periphery and showed a loss of focal ZO-1 concentrations along plaque edges facing the disk interior. Additionally, there was breakdown of the characteristic ICD pattern of small interior and large peripheral GJs. Continuous DN-ZO-1 expression in VMs over postnatal development reduced ICD-associated Cx43 GJs and increased lateralized and cytoplasmic Cx43. We conclude that ZO-1 regulation of GJ localization is via an association with the N-cadherin multiprotein complex and that this is a key determinant of stable localization of both AJs and GJs at the ICD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call