Abstract

TJP2/ZO-2-inactivating mutations in humans cause progressive cholestatic liver disease. Liver-specific deletion of Tjp2 in the mouse (Tjp2 cKO mice) leads to mild progressive cholestasis without an overt degradation of the bile-blood barrier (BBB). These mice are more susceptible to cholic acid (CA) induced liver injury. Interestingly, while initially also more susceptible, Tjp2 cKO mice develop tolerance to a DDC-supplemented diet. The DDC diet induces an exacerbated ductular reaction in Tjp2 cKO mice, which arises from the transdifferentiation of hepatocytes to cholangiocytes. Consequently, this transdifferentiation is only observed if Tjp2 is inactivated in hepatocytes, but not if deleted in cholangiocytes. The DDC-diet-induced hepatocyte transdifferentiation in Tjp2 cKO mice requires Yap and Wwtr1/Taz, whose protein expression is upregulated in hepatocytes lacking Tjp2, but is independent of Notch2. Although inactivating Tjp2 is sufficient for the upregulation of Yap and Wwtr1/Taz protein, efficient transdifferentiation requires the DDC-diet insult. Thus, Tjp2 negatively regulates Yap/Taz-mediated transdifferentiation of hepatocytes to cholangiocytes in response to DDC-diet-induced liver injury. Furthermore, transdifferentiation is regulated at multiple levels and the type of injury inflicted on the Tjp2 deficient liver plays an important role in the resulting pathophysiology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call