Abstract
A novel Ag-AgBr/ZnWO4 nanorod heterostructure composite was prepared via a facile deposition–precipitation method with ZnWO4 nanorods as the substrate, and characterized by XRD, SEM-EDX, TEM, XPS, and DRS to confirm its structure, morphology, composition, and optical property. The composite was used as a photocatalyst to destroy azo dye Acid Red 18 (AR18) under visible light irradiation. The effects of catalyst composition, solution pH, catalyst loading, and initial dye concentration on photocatalytic degradation rate and efficiency were examined. It was revealed that the photocatalytic activity of Ag-AgBr/ZnWO4 nanojunction system was higher than that of the single ZnWO4 or Ag-AgBr for AR18 degradation under visible light irradiation. The optimal content of Ag-AgBr in Ag-AgBr/ZnWO4 composite was 0.58:1 of Ag/W molar ratio using in the catalyst preparation. Acid pH and decreasing dye initial concentration were favorable to AR18 photodegradation, but the catalyst loading had an optimal value. The catalyst was stable and recyclable, after five successive cycles the photoactivity was fully maintained and the XRD patterns of AgBr displayed no evident change. Photoluminescence spectra revealed the enhanced photocatalytic activity and stability were closely related to the efficient separation of photogenerated carriers in Ag-AgBr/ZnWO4 nanojunction system. Superoxide radicals and holes were found to be main active species for AR18 photodegradation. Finally, the possible mechanism for AR18 degradation over Ag-AgBr/ZnWO4 nanorods under visible light irradiation was proposed as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Surface Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.