Abstract

We have investigated in the framework of the envelope function approximation and taking into account the dependence of the electron effective mass on radius the energy of an electron inside a ZnTe/CdSecore/shell spherical quantum dot. In order to make the problem more realistic, we describe the conduction band-edge alignment between core and shell materials by a finite height barrier. By applying the Ritz variational principle the effect of the electric field on the electronic states was also examined. Our numerical results show the opportunity to control the energy states position of the charge carriers inside our core/shell nanostructures by controlling the size (core radius, shell thickness) of the nanostructure and the strength of the external electric field. #CORE/SHELL MATERIALS #NANOSTRUCTURES #QUANTUM DOTS #ELECTRIC FIELD

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.