Abstract

ZnSe heteroepitaxial layers have been grown on GaAs (100), (110) on axis, and (110) 6° miscut substrates by molecular beam epitaxy. ZnSe on GaAs (110) shows smooth and featureless spectra from Rutherford backscattering channeling measurements taken along major crystalline directions, whereas ZnSe on GaAs (100) without pre-growth treatments exhibit large interface disorder in channeling spectra. ZnSe films grown on GaAs (110) on axis show facet formation over a wide range of growth conditions. The use of (110) 6° miscut substrates is shown to suppress facet formation; and under the correct growth conditions, facet-free surfaces are achieved. Etch pit density measurements give dislocation densities for ZnSe epitaxial layers grown on GaAs (100), (110) on axis, and (110) 6° miscut substrates of 107/cm2, 3 × 105/cm2 and 5 × 104/cm2, respectively. These results suggest that with further improvements to ZnSe growth on GaAs (110)-off substrates it may be possible to fabricate defect free ZnSe based laser devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.