Abstract

Actin re-organization and degradation of extracellular matrix by metalloproteases (MMPs) facilitate formation of cellular protrusions that are required for cell proliferation and migration. We find that Zn2+ activation of the Gq-coupled receptor ZnR/GPR39 controls these processes by regulating K+/Cl− co-transporter KCC3, which modulates cell volume. Silencing of KCC3 expression or activity reverses ZnR/GPR39 enhancement of cell proliferation, migration and invasion through Matrigel. Activation of ZnR/GPR39 recruits KCC3 into F-actin rich membrane protrusions, suggesting that it can locally control volume changes. Immunofluorescence analysis indicates that Zn2+ activation of ZnR/GPR39 and KCC3 are required to enhance formation of F-actin stress fibers and cellular protrusions. In addition, ZnR/GPR39 upregulation of KCC3-dependent transport increases the activity of matrix metalloproteases MMP2 and MMP9. Our study establishes a mechanism in which ZnR/GPR39 orchestrates localization and activation of KCC3, formation of F-actin rich cell protrusions and activation of MMPs, and thereby controls cell proliferation and migration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.