Abstract

Electron transport layers (ETLs) in perovskite solar cells (PSCs) are a key factor to determine the photovoltaic performance. Herein, we demonstrate preparation of ZnO/ZnS core-shell composites through directly synthesizing ZnS on the ZnO nanoparticles in solution. We confirmed the formation of ZnO/ZnS core-shell composites by the uses of X-ray diffraction patterns and the Fourier transform infrared spectroscopy. ZnO/ZnS composites exhibit much homogeneous surface morphology as compared with the bare ZnO as revealed in the scanning electronic microscopy. Moreover, the upper shift of conduction band level upon composition of the ZnO/ZnS film results in a better alignment of energy level, which facilitates cascade charge extraction and thus improves the current density of perovskite solar cell. The shift of conduction band also improves the voltage of the PSCs. The photoluminescence (PL) spectroscopies measured in both steady and transient states were carried out to characterize the charge extraction at the interface between CH3NH3PbI3 and the electron transport layers of either ZnO or ZnO/ZnS composite. The ZnO/ZnS composite can more efficiently quench the PL signal of perovskite absorber than bare ZnO resulting in enhanced photocurrent generation in PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.