Abstract
Recently the emissions of volatile organic compounds (VOCs) in the atmosphere have increased dramatically with rapid development of urbanization and industry. This led to a large decline in air quality around the world, which resulted in a heavy impact on human health. Therefore, new/cheap detection devices for VOCs are of high interest. Formaldehyde (FA) is a very toxic VOC, which damages the respiratory system even in the smallest doses and short exposure time. Zinc oxide (ZnO)/nickel oxide (NiO) heterostructures were synthesized using an economical route: firstly, NiO was prepared by liquid exfoliation technique and deposited by dip-coating on alumina ceramic transducers with two interdigital gold (Au) electrodes, followed by low—temperature hydrothermal growth of ZnO. The as-prepared sensors were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM-EDAX), and X-Ray fluorescence (XRF). The response/recovery of ZnO/NiO heterostructure-based microsensors for formaldehyde was investigated at room temperature, in agreement with modern sensing requirements. The sensor operating voltage was varied between 1.5 and 5.0 V direct current (DC), to achieve the best sensor performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.