Abstract

The authors show that, during a steady-state vapor phase growth of ZnO nanomaterials, indium doping causes the structural change from usual [0001]-axial short nanowires to [112¯0]-axial nanobelts of much larger aspect ratio. They used an analytical thermodynamic model based on geometric summation of the Gibbs free energy to predict the dimension dependence of the nanowires and nanobelts for both pure and In-doped ZnO. The calculation result agrees with the experiment observation that in situ indium doping influences the nucleation and supports the dominating growth of a-axial nanobelts over c-axial nanowires.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.