Abstract

The wide bandgap, one-dimensional zinc oxide (ZnO) nanowires (NWs) and their heterostructures with other materials provide excellent pathways for efficient photovoltaic (PV) and light-emitting devices. ZnO NWs sensitized with quantum dots (QDs) provide high-surface area and tunable bandgap absorbers with a directional path for carriers in advanced PV devices, while ZnO heterojunctions with other p-type wide bandgap materials lead to light-emitting diodes (LEDs) with better emission and waveguiding properties compared with the homojunction counterparts. Synthesis of the structures with the desired morphology is a key to device applications. In this work, ZnO NW arrays were synthesized using hydrothermal method on ZnO and GaN thin films. Highly crystalline, upright, and ordered arrays of ZnO NWs in the 50 to 250-nm diameter range and 1 μm in length were obtained. The morphology and optical properties of the NWs were studied. Energy dispersive x-ray spectroscopy (EDX) analysis revealed nonstoichiometric oxygen content in the grown ZnO NWs. Photoluminescence (PL) studies depicted the presence of oxygen vacancy and interstitial zinc defects in the grown ZnO NWs, underlining the potential for LEDs. Further, hydrophobically ligated CdSe/ZnS QDs were successfully incorporated to the NW arrays. PL analysis indicated the injection of electrons from photoexcited QDs to the NWs, showing the potential for quantum dot-sensitized solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.