Abstract

Biosensing has developed tremendously since it was demonstrated by Leland C. Clark Jr. in 1962. ZnO nanomaterials are attractive candidates for fabricating biosensors, because of their diverse range of nanostructures, high electron mobility, chemical stability, electrochemical activity, high isoelectric points which promote enzyme adsorption, biocompatibility, and piezoelectric properties. This review covers ZnO nanostructures applied in enzyme biosensors, in the light of electrochemical transduction and field effect transduction. Different assembly processes and immobilization methods have been used to load enzymes into various ZnO nanostructures, providing enzymes with favorable micro-environments and enhancing their sensing performance. We briefly describe recent trends in ZnO syntheses, and the analytical performance of the fabricated biosensors, summarize the advantages of using ZnO nanostructures in biosensors, and conclude with future challenges and prospects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.