Abstract

This work presents deposition of Zn solution seed layer assisted growth of zinc oxide (ZnO) nanostructure layers by continuous spray pyrolysis reactor using lanthanides (Er and Eu) and metal (Al) influenced zinc acetate precursor solution. Dopants in precursors have influenced structural property, surface morphology and optical reflectance of resulting ZnO thin films which are supported by X-ray diffractometer, scanning electron microscope and reflectance measurements. Enhanced dispersion amongst nanorods is observed under the influence of Er and Al dopant in ZnO thin film. The change of precursor from Zinc acetate to Titanium tetraisopropoxide for Er doped precursor is helping to achieve better crystalline ZnO nanorods arrangement with increased homogenous growth, which results into improved light reflectance reduction of thin film. The experimental evidences of light reflectance from ZnO nanorods on Si surface is studied with the help of FDTD based Lumerical software package which can be a useful study for designing ZnO nanorods thin film in device purposes. The utility of ZnO layer by this reactor on low efficiency Si solar cell is also explored in improving device efficiency via increase of photocurrent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call