Abstract

Hierarchical ZnO microarchitectures have been fabricated on a large scale by a simple and economical citrate-mediated hydrothermal route for application in dye-sensitized solar cells (DSSCs). These flowerlike architectures are constructed by many interleaving nanosheets which have ultrathin thickness of about 5 nm. Compared with the DSSCs based on other forms of nanostructures, such as ZnO nanorods and nanoparticles, the DSSCs constructed by these hierarchical ZnO microarchitectures demonstrate a remarkable enhancement in photoelectric conversion efficiency. This enhanced performance is mainly due to the large surface area of the hierarchical microarchitectures for dye loading, and their special structural feature to ensure rapid transportation of electrons. Our results suggest that this new type of ZnO nanosheet-based microarchitectures is a promising material for application in DSSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.