Abstract

This study presents finite element time-domain simulation of a SiO 2 /36°-YX LiTaO 3 Love wave (LW) delay line to explore coupled resonance phenomenon with ZnO nanorods designed on the top surface of the device. The effect of variation in ZnO nanorods height on the propagation of LW, mode-transitions, area-averaged stress, insertion loss, and mass sensitivity of the device is studied. Simulation results show that at the critical height of ZnO nanorods, coupled resonance occurs that causes a sharp swing in the phase shift indicating a transition from inertial to elastic loading. Coupled resonance increases the acoustic impedance of the device and also the average stress between nanorod and substrate interface. Simulation of mass loading is performed by applying an incremental surface mass density on the active area of the device. A nanorod packing density of 1 μm -2 gives a high mass sensitivity of 728 m 2 kg -1 which is more than ten times the sensitivity of a plain LW device. At the coupled resonant height, the insertion loss of the sensor increases, and a swing of about 1 dB is observed with variation in the nanorod height.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.