Abstract

BackgroundZinc oxide nanoparticles (ZnONPs) have been widely studied as bactericidal reagents. However, it is still challenging to use ZnONPs as a root canal sealant to eliminate infecting microorganisms in the root canal system. This study aimed at understanding the antibacterial and biofilm effects of ZnONPs in the infected root canal and their effect on cell function.MethodsThis study aimed to develop a better understanding of the antibacterial effects of ZnONPs in the infected root canal and their effect on cell function. Experiments were performed in two stages; the first stage included inhibition zone tests and the minimum inhibitory concentration (MIC) test, which were performed to examine the antibacterial activity of ZnONPs against Porphyromonas gingivalis (P. gingivalis) and Actinomyces Naeslundii (A. naeslundii) bacteria in vitro. ZnONPs were further evaluated for their biocompatibility using normal mouse NIH3T3 and OCCM-30 cells by the cell-based MTT assay. In addition, the influence of ZnONPs on matrix metalloproteinases in NIH3T3 cells and their inhibiting factors (Mmp13 and Timp1) were measured using the real-time PCR technique and western blot method.ResultsThe MIC of ZnONPs against P. gingivalis and A. naeslundii were confirmed to be 10 μg/mL and 40 μg/mL, respectively. The MTT assay showed that ZnONPs were nontoxic. The RT-PCR and western blotting results showed that Mmp13 was downregulated and Timp1 expression was increased. Meanwhile, ZnONPs were shown to increase the expression of the OCCM-30 osteogenesis-related factors Bsp and Runx2. Finally, there was no significant change in the morphology of NIH3T3 and OCCM-30 cells after the addition of different concentrations of ZnONPs for different periods of time.ConclusionZnONPs have excellent antibacterial activity against P. gingivalis and A. naeslundii and have low cell cytotoxicity in vitro.

Highlights

  • Zinc oxide nanoparticles (ZnONPs) have been widely studied as bactericidal reagents

  • ZnONPs had bactericidal effects against A. naeslundii and P. gingivalis The antibacterial effects of ZnONPs against A. naeslundii and P. gingivalis were verified by two established minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests

  • The maximum inhibitory radii of ZnONPs on P. gingivalis and A .naeslundii were 18.09 mm and 12.05 mm, respectively. These results showed that ZnONPs on P. gingivalis and A. naeslundii had greater antibacterial activity than commercial AH-Plus and root filling agents

Read more

Summary

Introduction

It is still challenging to use ZnONPs as a root canal sealant to eliminate infecting microorganisms in the root canal system. This study aimed at understanding the antibacterial and biofilm effects of ZnONPs in the infected root canal and their effect on cell function. The purpose of root canal therapy is to eliminate bacteria from the root canal system and prevent future infections [1]. The elimination of microorganisms is challenging due to the complex morphology of the root canal system, which includes various dentin tubule morphologies, apical tube branching, isthmus, and irregularities. It is challenging to achieve a sterile root canal system and eliminate infected debris [3]. Root canal treatment often fails due to bacterial infection after root canal filling. Fillers with long-lasting antimicrobial properties may be the preferred choice for more durable root canal filling materials

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.