Abstract

Ultrathin films of zinc oxide nanoparticles (ZnONP), graphene oxide (GO) and reduced graphene oxide (RGO) are assembled layer-by-layer (LbL) onto quartz and ITO substrates. UV–vis absorption, micro Raman, and x-ray photoelectron spectroscopies show a linear dependence between the mass of adsorbed nanomaterials and the number of ZnONP/GO and ZnONP/RGO deposited bilayers and suggest the establishment of covalent bonds rather than electrostatic interactions between ZnONP and GO/RGO sheets. In addition, impedance spectroscopy and scanning electron microscopy reveal that the films are formed via a nucleation-coalescence mechanism, in which a continuous surface is established after the deposition of twenty bilayers. Cyclic voltammetry and galvanostatic charge-discharge measurements confirm their double-layer capacitor behavior and that the ZnONP/RGO exhibits a capacitor performance better than ZnONP/GO. The charge stored in ZnONP/RGO films remains unaltered during 1,000 charge-discharge cycles without apparent film degradation. The proposed LbL method is advantageous since ZnONP are assembled as-produced without surface functionalization or employment of surfactants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.