Abstract
Humic acid (HA) is the most important precursor of toxic disinfection byproducts upon chlorination. Removing HA from water body is therefore critical in drinking water acquisition. In this research, ZnO nanoparticles are employed for photocatalysis under UV light at neutral pH to remove HA from a water environment. Almost 100% degradation of HA was achieved using 0.3 g/L of ZnO in 180 min with UV-A and UV-C light. Under identical experimental conditions, total organic carbon (TOC) removals reach 67% and 21% with UV-A and UV-C light, respectively. A higher degree of mineralization of HA is achieved with UV-A light although the degradation of HA is slightly better with UV-C light. This indicates that ZnO/UV-A has relatively low selectivity to degrade different compounds, including various intermediates from HA degradation. The use of UV-A light is therefore recommended for ZnO as it possesses higher mineralization ability. Negligible TOC is observed on the ZnO surface after photocatalytic reactions. In contrast, the adsorption of HA in dark conditions reaches 42% in 180 min. This strongly indicates that the adsorption of HA plays an important role in the photocatalytic degradation of HA, but it is not the main process for HA removal.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.