Abstract

Employ of hollow nanostructure carbon materials as a host framework for sulfur cathode is a promising strategy to cope with the notorious posers in lithium-sulfur (LiS) battery. However, the dissolution and diffusion of intermediate polysulfides in electrolytes still result in rapid capacity loss and poor rate performances, due to the weak interaction between polarized lithium polysulfides and non-polarized carbon host. To address this challenge, a bipolar material, zinc oxide embedded tetrapod-shaped carbon shell (TCS/ZnO) is designed for polysulfides immobilization in LiS battery. The TCS/ZnO composites are synthesized through a CVD process using tetrapod shaped ZnO nanowhiskers as template, following by a partially hydrogen etching treatment. Attributed to the strong chemisorption of ZnO to polysulfides, high initial specific capacity of 1284 mAh g−1sulfur, stable Coulombic efficiency of ∼99.5% and excellent cycling stability (815 mAh g−1sulfur after 100 cycles at 0.2 C) are exhibited for S-TCS/ZnO cathode with optimized ratio of ZnO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.