Abstract
Nanoparticle metal oxides offer a wide variety of potential applications in medicine due to the unprecedented advances in nanobiotechnology research. In this work, the effect of zinc oxide (ZnO) nanoparticles prepared by mechano-chemical method on the antibacterial activity of different antibiotics was evaluated using disk diffusion method against Staphylococcus aureus and Escherichia coli. The average size of ZnO nanoparticles was between 20 nm and 45 nm. Although ZnO nanoparticles (500 microg/disk) decreased the antibacterial activity of amoxicillin, penicillin G, and nitrofurantoin in S. aureus, the antibacterial activity of ciprofloxacin increased in the presence of ZnO nanoparticles in both test strains. A total of 27% and 22% increase in inhibition zone areas was observed for ciprofloxacin in the presence of ZnO nanoparticles in S. aureus and E. coli, respectively. The enhancing effect of this nanomaterial on the antibacterial activity of ciprofloxacin was further investigated at three different contents (500, 1000, and 2000 microg/disk) against various clinical isolates of S. aureus and E. coli The enhancing effect of ZnO nanoparticles on the antibacterial activity of ciprofloxacin was concentration-dependent against all test strains. The most enhancing activities were observed in the contents of the 2000 microg/disk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.