Abstract

In this study, ZnO nanoparticles co-doped with Fe3+ and Eu3+ were prepared by a facile co-precipitation method. The structure and morphology of the as-prepared nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance absorption spectra, respectively. The photocatalytic activities of the prepared catalysts were evaluated by photocatalytic degradation of methyl orange in aqueous solution with solar light irradiation. The co-doped Fe3+ and Eu3+ showed a synergistic effect, which significantly increased the photocatalytic activity of ZnO. The influences of calcination time, photocatalytic reaction temperature and catalyst loading on the photocatalytic activity of the catalyst were also investigated. It was found that there were an optimum photocatalytic reaction temperature and an optimum catalyst loading for high photocatalytic efficiency, and the photocatalytic efficiency decreased with increase in calcination time. The results of this study demonstrate that the as-prepared product of Eu3+/Fe3+/ZnO is a promising photocatalyst for solar assisted degradation of organic pollutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.