Abstract

Wide bandgap semiconductor zinc oxide (ZnO) layers were grown by metalorganic vapor phase epitaxy (MOVPE) using nitrous oxide (N2O). Strong ultraviolet (UV) photoluminescence emissions with 1000 times less deep ones at room temperature were observed from ZnO layers grown on sapphire. Alow temperature (500 C)-grown buffer layer of ZnO was effective to enhance the initial nucleation process and to achieve high quality ZnO layers on it at higher growth temperatures (600–700 C). ZnO layers grown on III–V semiconductor substrates showed dominant UV luminescence in spite of low temperature growth. These results imply the abilities of high quality ZnO growth by MOVPE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.