Abstract

Arsenic (III) exposure, often from contaminated water, can have severe health repercussions. Chronic exposure to this toxic compound is linked to increased risks of various health issues. Various technologies exist for arsenic (III) removal from contaminated water sources. This work synthesized ZnO-CuO nanocomposites through ultrasound-assisted coprecipitation, generating abundant hydroxylated sites via the deposition of ZnO nanoparticles onto CuO sheets for enhanced arsenic (III) adsorption. Structural characterization verified the formation of phase-pure heterostructures with emergent properties. Batch studies demonstrated exceptional 85.63% As(III) removal at pH 5, where binding with prevalent neutral H3AsO3 occurred through inner-sphere complexation with protonated groups. However, competing anions decreased removal through site blocking. Favorable pseudo-second order chemisorption kinetics and the 64.77 mg/g maximum Langmuir capacity revealed rapid multilayer uptake, enabled by intrinsic synergies upon nanoscale mixing of Zn/Cu oxides. The straightforward, energy-efficient ultrasonic production route makes this material promising for real-world water treatment integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.