Abstract

ObjectiveThe study purpose was to compare the anti- novel coronavirus disease 2019 (COVID-19) property of chlorogenic acid (CGA) and Zinc oxide nanoparticles (ZnO-NP) with the new valid synthesized complex of ZnO /CGA-NPs. MethodsThe facile mixing method was utilized to prepare ZnO/CGA-NPs. The in vitro effect of different ZnO/CGA-NPs concentrations on papain-like protease (PLpro) and spike protein- receptor-binding domain (RBD) was measured by ELISA technique. The compounds effects on SARS-CoV2 were determined on viral entry, replication, and assembly by using plaque reduction assay, qPCR, and ELISA techniques. Their individual effects or mixed with hydroxychloroquine (HCQ) on erythrocytes (RBCs) and leukocytes (WBCs) were evaluated by routine cell culture technique. Finally, turbidity and agar well diffusion assays were done to evaluate their antimicrobial properties against Escherichia. coli, klebsila pneumonia, Streptococcus pyogenes, Staphylococcus aureus, and Candida albicans. ResultsThe results confirmed that the uniformly dispersed ZnO-NPs were converted to aggregated form of ZnO/CGA-NPs upon the addition of CGA. The inhibitory concentration 50 (IC50) of ZnO /CGA-NPs against RBD, angiotensin-converting enzyme 2 (ACE2) and PLpro were 1647.7, 323.3 µg/mL and 38.7 µg/mL, respectively. Also, it inhibited E-gene, RdRp gene, E-protein, and spike protein with an IC50 of 0.11, 0.13, 0.48, and 0.37 µg/mL, respectively. It acted as an antimicrobial against all tested organisms with a minimum inhibitory concentration (MIC) of 26 µg/mL. Finally, ZnO/CGA-NPs Complex (0.1 IC50) prevented the cytotoxic effect of HCQ on RBCs and WBC by 92.3 and 90 %, respectively. ConclusionZnO/CGA-NPs Complex can be considered as a new anti- severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) compound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call