Abstract

Li metal anodes have attracted attention due to their high specific capacity and low electrochemical potential. Nevertheless, the uncontrolled growth of Li dendrites hinders the practical application of Li metal batteries. Although the various approaches have made performance improvements, safety hazards still exist since Li dendrites are still growing along the anode to the separator during the continuous plating/stripping process. Herein, a straightforward method is proposed to achieve stable Li metal batteries with directional growth control by using a functional ZnO@C/cellulose membrane as a separator. The abundant pore structure and functional groups of biomass cellulose enhance the Li-ion transport and interface compatibility. The ZnO transforms in situ to form a Li-Zn alloy layer which is uniformly coated to the separator to direct uniform ion concentration polarization and charge distribution polarization, control the growth direction of Li, significantly improve the cycling stability, and promote the reversibility of the Li plating/exfoliation process. As a result, the symmetric cell exhibits an extreme lifetime of more than 4500h and low polarization at 3mAcm-2 . The cycling performance of the Li||LiFePO4 full cell reaches a capacity retention of 98% after 270 cycles at a mass loading of 10mgcm-2 .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.