Abstract

Rapid transmission of infectious microorganisms such as viruses and bacteria through person-to-person contact has contributed significantly to global health issues. The high survivability of these microorganisms on the material surface enumerates their transmissibility to the susceptible patient. The antimicrobial coating has emerged as one of the most interesting technologies to prevent growth and subsequently kill disease-causing microorganisms. It offers an effective solution a non-invasive, low-cost, easy-in-use, side-effect-free, and environmentally friendly method to prevent nosocomial infection. Among antimicrobial coating, zinc oxide (ZnO) stands as one of the excellent materials owing to zero toxicity, high biocompatibility to human organs, good stability, high abundancy, affordability, and high photocatalytic performance to kill various infectious pathogens. Therefore, this review provides the latest research progress on advanced applications of ZnO nanostructure-based antibacterial coatings for medical devices, biomedical applications, and health care facilities. Finally, future challenges and clinical practices of ZnO-based antibacterial coating are addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.